Skip to main content
Version: 0.10.4

ML System

Why Would You Integrate ML System with DataHub?

Machine learning systems have become a crucial feature in modern data stacks. However, the relationships between the different components of a machine learning system, such as features, models, and feature tables, can be complex. Thus, it is essential for these systems to be discoverable to facilitate easy access and utilization by other members of the organization.

For more information on ML entities, please refer to the following docs:

Goal Of This Guide

This guide will show you how to

  • Create ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup
  • Read ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup
  • Attach MlFeatureTable or MlModel to MlFeature

Prerequisites

For this tutorial, you need to deploy DataHub Quickstart and ingest sample data. For detailed steps, please refer to Datahub Quickstart Guide.

Create ML Entities

Create MlFeature

# Inlined from /metadata-ingestion/examples/library/create_mlfeature.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter

# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server="http://localhost:8080", extra_headers={})

dataset_urn = builder.make_dataset_urn(
name="fct_users_deleted", platform="hive", env="PROD"
)
feature_urn = builder.make_ml_feature_urn(
feature_table_name="my-feature-table",
feature_name="my-feature",
)

# Create feature
metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlFeature",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=feature_urn,
aspectName="mlFeatureProperties",
aspect=models.MLFeaturePropertiesClass(
description="my feature", sources=[dataset_urn], dataType="TEXT"
),
)

# Emit metadata!
emitter.emit(metadata_change_proposal)

Note that when creating a feature, you can access a list of data sources using sources.

Create MlFeatureTable

# Inlined from /metadata-ingestion/examples/library/create_mlfeature_table.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter

# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server="http://localhost:8080", extra_headers={})

feature_table_urn = builder.make_ml_feature_table_urn(
feature_table_name="my-feature-table", platform="feast"
)
feature_urns = [
builder.make_ml_feature_urn(
feature_name="my-feature", feature_table_name="my-feature-table"
),
builder.make_ml_feature_urn(
feature_name="my-feature2", feature_table_name="my-feature-table"
),
]
feature_table_properties = models.MLFeatureTablePropertiesClass(
description="Test description", mlFeatures=feature_urns
)

# MCP creation
metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlFeatureTable",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=feature_table_urn,
aspect=feature_table_properties,
)

# Emit metadata!
emitter.emit(metadata_change_proposal)

Note that when creating a feature table, you can access a list of features using mlFeatures.

Create MlModel

Please note that an MlModel represents the outcome of a single training run for a model, not the collective results of all model runs.

# Inlined from /metadata-ingestion/examples/library/create_mlmodel.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter

# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server="http://localhost:8080", extra_headers={})
model_urn = builder.make_ml_model_urn(
model_name="my-test-model", platform="science", env="PROD"
)
model_group_urns = [
builder.make_ml_model_group_urn(
group_name="my-model-group", platform="science", env="PROD"
)
]
feature_urns = [
builder.make_ml_feature_urn(
feature_name="my-feature", feature_table_name="my-feature-table"
),
builder.make_ml_feature_urn(
feature_name="my-feature2", feature_table_name="my-feature-table"
),
]

metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlModel",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=model_urn,
aspectName="mlModelProperties",
aspect=models.MLModelPropertiesClass(
description="my feature",
groups=model_group_urns,
mlFeatures=feature_urns,
trainingMetrics=[
models.MLMetricClass(
name="accuracy", description="accuracy of the model", value="1.0"
)
],
hyperParams=[
models.MLHyperParamClass(
name="hyper_1", description="hyper_1", value="0.102"
)
],
),
)

# Emit metadata!
emitter.emit(metadata_change_proposal)

Note that when creating a model, you can access a list of features using mlFeatures. Additionally, you can access the relationship to model groups with groups.

Create MlModelGroup

Please note that an MlModelGroup serves as a container for all the runs of a single ML model.

# Inlined from /metadata-ingestion/examples/library/create_mlmodel_group.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter

# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server="http://localhost:8080", extra_headers={})
model_group_urn = builder.make_ml_model_group_urn(
group_name="my-model-group", platform="science", env="PROD"
)


metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlModelGroup",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=model_group_urn,
aspectName="mlModelGroupProperties",
aspect=models.MLModelGroupPropertiesClass(
description="my model group",
),
)


# Emit metadata!
emitter.emit(metadata_change_proposal)

Expected Outcome of creating entities

You can search the entities in DataHub UI.

Read ML Entities

Read MLFeature

query {
mlFeature(urn: "urn:li:mlFeature:(test_feature_table_all_feature_dtypes,test_BOOL_LIST_feature)"){
name
featureNamespace
description
properties {
description
dataType
version {
versionTag
}
}
}
}

Expected response:

{
"data": {
"mlFeature": {
"name": "test_BOOL_LIST_feature",
"featureNamespace": "test_feature_table_all_feature_dtypes",
"description": null,
"properties": {
"description": null,
"dataType": "SEQUENCE",
"version": null
}
}
},
"extensions": {}
}

Read MLFeatureTable

query {
mlFeatureTable(urn: "urn:li:mlFeatureTable:(urn:li:dataPlatform:feast,test_feature_table_all_feature_dtypes)"){
name
description
platform {
name
}
properties {
description
mlFeatures {
name
}
}
}
}

Expected Response:

{
"data": {
"mlFeatureTable": {
"name": "test_feature_table_all_feature_dtypes",
"description": null,
"platform": {
"name": "feast"
},
"properties": {
"description": null,
"mlFeatures": [
{
"name": "test_BOOL_LIST_feature"
},
...
{
"name": "test_STRING_feature"
}
]
}
}
},
"extensions": {}
}

Read MLModel

query {
mlModel(urn: "urn:li:mlModel:(urn:li:dataPlatform:science,scienceModel,PROD)"){
name
description
properties {
description
version
type
mlFeatures
groups {
urn
name
}
}
}
}

Expected Response:

{
"data": {
"mlModel": {
"name": "scienceModel",
"description": "A sample model for predicting some outcome.",
"properties": {
"description": "A sample model for predicting some outcome.",
"version": null,
"type": "Naive Bayes classifier",
"mlFeatures": null,
"groups": []
}
}
},
"extensions": {}
}

Read MLModelGroup

query {
mlModelGroup(urn: "urn:li:mlModelGroup:(urn:li:dataPlatform:science,my-model-group,PROD)"){
name
description
platform {
name
}
properties {
description
}
}
}

Expected Response: (Note that this entity does not exist in the sample ingestion and you might want to create this entity first.)

{
"data": {
"mlModelGroup": {
"name": "my-model-group",
"description": "my model group",
"platform": {
"name": "science"
},
"properties": {
"description": "my model group"
}
}
},
"extensions": {}
}

Add ML Entities

Add MlFeature to MlFeatureTable

# Inlined from /metadata-ingestion/examples/library/add_mlfeature_to_mlfeature_table.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
from datahub.metadata.schema_classes import MLFeatureTablePropertiesClass

gms_endpoint = "http://localhost:8080"
# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server=gms_endpoint, extra_headers={})

feature_table_urn = builder.make_ml_feature_table_urn(
feature_table_name="my-feature-table", platform="feast"
)
feature_urns = [
builder.make_ml_feature_urn(
feature_name="my-feature2", feature_table_name="my-feature-table"
),
]

# This code concatenates the new features with the existing features in the feature table.
# If you want to replace all existing features with only the new ones, you can comment out this line.
graph = DataHubGraph(DatahubClientConfig(server=gms_endpoint))
feature_table_properties = graph.get_aspect(
entity_urn=feature_table_urn, aspect_type=MLFeatureTablePropertiesClass
)
if feature_table_properties:
current_features = feature_table_properties.mlFeatures
print("current_features:", current_features)
if current_features:
feature_urns += current_features

feature_table_properties = models.MLFeatureTablePropertiesClass(mlFeatures=feature_urns)
# MCP createion
metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlFeatureTable",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=feature_table_urn,
aspect=feature_table_properties,
)

# Emit metadata! This is a blocking call
emitter.emit(metadata_change_proposal)

Add MlFeature to MLModel

# Inlined from /metadata-ingestion/examples/library/add_mlfeature_to_mlmodel.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
from datahub.metadata.schema_classes import MLModelPropertiesClass

gms_endpoint = "http://localhost:8080"
# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server=gms_endpoint, extra_headers={})

model_urn = builder.make_ml_model_urn(
model_name="my-test-model", platform="science", env="PROD"
)
feature_urns = [
builder.make_ml_feature_urn(
feature_name="my-feature3", feature_table_name="my-feature-table"
),
]

# This code concatenates the new features with the existing features in the model
# If you want to replace all existing features with only the new ones, you can comment out this line.
graph = DataHubGraph(DatahubClientConfig(server=gms_endpoint))
model_properties = graph.get_aspect(
entity_urn=model_urn, aspect_type=MLModelPropertiesClass
)
if model_properties:
current_features = model_properties.mlFeatures
print("current_features:", current_features)
if current_features:
feature_urns += current_features

model_properties = models.MLModelPropertiesClass(mlFeatures=feature_urns)

# MCP creation
metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlModel",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=model_urn,
aspect=model_properties,
)

# Emit metadata!
emitter.emit(metadata_change_proposal)

Add MLGroup To MLModel

# Inlined from /metadata-ingestion/examples/library/add_mlgroup_to_mlmodel.py
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph

gms_endpoint = "http://localhost:8080"
# Create an emitter to DataHub over REST
emitter = DatahubRestEmitter(gms_server=gms_endpoint, extra_headers={})

model_group_urns = [
builder.make_ml_model_group_urn(
group_name="my-model-group", platform="science", env="PROD"
)
]
model_urn = builder.make_ml_model_urn(
model_name="science-model", platform="science", env="PROD"
)

# This code concatenates the new features with the existing features in the feature table.
# If you want to replace all existing features with only the new ones, you can comment out this line.
graph = DataHubGraph(DatahubClientConfig(server=gms_endpoint))

target_model_properties = graph.get_aspect(
entity_urn=model_urn, aspect_type=models.MLModelPropertiesClass
)
if target_model_properties:
current_model_groups = target_model_properties.groups
print("current_model_groups:", current_model_groups)
if current_model_groups:
model_group_urns += current_model_groups

model_properties = models.MLModelPropertiesClass(groups=model_group_urns)
# MCP createion
metadata_change_proposal = MetadataChangeProposalWrapper(
entityType="mlModel",
changeType=models.ChangeTypeClass.UPSERT,
entityUrn=model_urn,
aspect=model_properties,
)

# Emit metadata! This is a blocking call
emitter.emit(metadata_change_proposal)

Expected Outcome of Adding ML Entities

You can access to Features or Group Tab of each entity to view the added entities.